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Abstract
We consider possible routes to superconductivity on the basis of the t–J–
V model plus phonons on the triangular lattice. We studied the stability
conditions for the homogeneous Fermi liquid (HFL) phase against different
broken symmetry phases. Besides the

√
3 × √

3 CDW phase, triggered by
the nearest-neighbour Coulomb interaction V , we have found that the HFL
is unstable, at very low doping, against a bond-ordered phase due to J . We
also discuss the occurrence of phase separation at low doping and V . The
interplay between the electron–phonon interaction and correlations near the√

3 × √
3 CDW leads to superconductivity in the unconventional next-nearest-

neighbour f-wave (NNN-f) channel with a dome shape for Tc around x ∼ 0.35,
and with values of a few kelvin. Near the bond-ordered phase at low doping we
found tendencies to superconductivity with d-wave symmetry for finite J and
x < 0.15. Possible implications for cobaltates are discussed.

1. Introduction

Since superconductivity was discovered in hydrated cobaltates Nax CoO2·yH2O for x ∼ 0.35
and y ∼ 1.3 [1] an enormous amount of attention has been focused on this system, in spite
of the rather modest critical temperature Tc, that follows a characteristic dome shape [2] with
maximum value Tc ∼ 5 K around a doping x ∼ 0.35. Several proposals considered cobaltates
as electron-doped Mott insulators with a layered structure, where Co ions are in a low-spin
state (S = 1/2) on a triangular lattice. Following such arguments, it was expected that the
resonating valence bond (RVB) scenario proposed long ago by Anderson [3] for the cuprates
could be clearly realized in the cobaltates.

The importance of strong electronic correlations seems to be supported by several
experiments. The small bandwidth of the (t2g) levels close to the Fermi energy [4, 5] was
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confirmed by recent photoemission studies [6, 7] showing for x = 0.3 a reduction of bandwidth
by a factor of two with respect to the calculated ones [5]. In fact, even taking the whole t2g

manifold, the bare bandwidth is ∼1.6 eV [4], while from core level photoemission spectroscopy
[8] values of the onsite interaction Udd ∼ 3.0–5.5 eV were estimated. Hence, electronic
correlations seem to play an essential role, so that Hubbard or t–J models were proposed [9]
to describe cobaltates.

Several unconventional pairing channels and mechanisms were proposed for the
superconducting state: (a) pure t–J model RVB based calculations predict singlet d-wave
superconductivity [9–12] with time-reversal symmetry breaking; (b) charge fluctuations
predict a triplet next-nearest-neighbour (NNN) f-wave state [13–15]; (c) spin-triplet
f-wave superconductivity was also proposed based on phenomenology and symmetry
considerations [16], due to the topology of the Fermi surface [17], from weak-coupling studies
of a multiorbital Hubbard model [18], and considering spin–orbit coupling [19–21].

A number of magnetic resonance [22–24] and μSR [25, 26] experiments are
consistent with unconventional triplet superconductivity and exclude time-reversal symmetry
breaking [26]. Although those results seem at the moment not conclusive, with some NMR
experiments [27] indicating the possibility for singlet s-wave superconductivity, specific heat
measurements [28] are consistent with the existence of a superconducting gap with nodal lines.
Based on the results pointing to triplet superconductivity with nodal lines, f-wave symmetry
appears as a very promising candidate (see also [29] for a more detailed discussion).

Besides superconductivity, other features of the electronic structure point to the proximity
of other instabilities. Photoemission spectroscopy indicates the presence of a pseudogap of
∼20 meV with a decrease of the density of states at the Fermi energy as the temperature
is lowered [30]. Also Raman scattering experiments recently reported a pseudogap [31].
Sidebands in the spectra of E1g phonons suggest that the pseudogap arises from a charge
ordering instability. Such an instability was only observed in superconducting samples. A very
recent photoemission experiment [32] was also interpreted in terms of the proximity of the
system to a charge order phase. From the possible mechanisms for superconductivity discussed
above, (b) reconciles the possibility of a charge ordering instability with an unconventional
superconducting state characterized by nodal lines in the order parameter. However, estimates
of Tc for a pure electronic model lead to extremely low values [14].

As a natural extension we have recently considered the interplay between phonons and
electronic correlations [15]. There, the t–V model on the triangular lattice (where V is the
Coulomb repulsion between nearest neighbours) was proposed for the electronic sub-system.
The main effect of V is to bring the system closer to a

√
3 × √

3 charge-density wave
(CDW) phase where charge fluctuations are strongly increased. Under these circumstances,
the electron–phonon (e–ph) interaction vertex is renormalized by charge fluctuations leading to
superconductivity with NNN-f unconventional pairing symmetry around x ∼ 0.35.

As mentioned above, originally, several theories were developed on the basis of the pure
t–J model [9, 10, 12]. Moreover, recent NMR experiments [33] point to enhanced low
frequency spin fluctuations before superconductivity sets in. Therefore, a more general study
is needed, where both V as well as the antiferromagnetic spin exchange J are considered, in
order to clarify the interplay or competition of electronic instabilities in different parts of the
phase diagram.

We present here such a study, showing that the region where singlet d-wave pairing due to
J dominates is well separated from the one where the NNN f-wave pairing appears.

The presence of J triggers a normal state V -independent instability at low doping. This
so-called bond-order phase (BOP) is found to be mainly of d-wave character and dominated
by the exchange interaction J . Phase separation (PS) was also obtained at low doping.
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Figure 1. Sketch of the obtained generic phase diagram. The figure shows the phases HFL, BOP,√
3 × √

3 CDW and PS. Inside the HFL phase superconductivity is possible in the shading regions.
Tendencies to superconductivity are larger in the regions where the intensity of the shadow is larger.
For instance, making a cut at a given V along the dashed line we find superconductivity with NNN-
f symmetry following a dome shape around x ∼ 0.38. For low x superconductivity is possible
with d-wave symmetry for finite J . With decreasing J the onset of the BOP (xc) moves toward
x = 0, and superconductivity is at the same time strongly suppressed. The diagram is presented for
0 < x < 0.5, where our theory predicts superconducting phases.

(This figure is in colour only in the electronic version)

After identifying the parameter region (J–V –x) where the HFL is stable we have studied
superconductivity. As in the case with J = 0, unconventional NNN-f pairing near the

√
3×√

3
CDW phase following a dome shape around x ∼ 0.35 is obtained for expected values of J .
The values for Tc obtained in the full model are of the order of a few kelvin. In addition, for
finite J we have found tendencies to d-wave superconductivity in the immediate vicinity of the
BOP. Figure 1 gives a sketch of the phase diagram obtained with our theory.

The paper is organized as follows. In section 2 the formalism used is summarized,
in order to allow for a self-contained presentation. In section 3 the stability conditions
for the homogeneous Fermi liquid (HFL) phase are discussed. Section 4 is devoted to
superconductivity and its possible channels. In section 5, conclusions and discussions are
presented.

2. A large-N approach for the t–J–V model and Feynman rules

Here we describe our treatment of the t–J–V model, given by

H = −t
∑

〈i, j〉,σ
(c̃†

iσ c̃ jσ + h.c.) + J
∑

〈i, j〉
(�Si �Sj − 1

4 ni n j ) + V
∑

〈i, j〉
ni n j (1)

where t , J and V are the hopping, the exchange interaction and the Coulomb repulsion,
respectively, between nearest-neighbour sites denoted by 〈i j〉. c̃†

iσ and c̃iσ are the fermionic
creation and destruction operators of holes, respectively, under the constraint that double
occupancy is excluded, and ni is the corresponding density operator at site i .

Now, we introduce Hubbard operators [34] which are related to the fermionic operators as
follows:

Xσ0
i = c̃†

iσ ni = (X↑↑
i + X↓↓

i )

X0σ
i = c̃iσ X↑↓

i = S+
i X↓↑

i = S−
i .
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The five operators Xσσ ′
i and X00

i are boson-like and the four operators Xσ0
i and X0σ

i
are fermion-like. The names fermion-like and boson-like come from the fact that Hubbard
operators do not verify the usual fermionic and bosonic commutations rules.

In previous papers [35–38] we have developed a large-N expansion for the t–J–V model
in the framework of the path integral representation for the Hubbard X operators. In this
approach the X -operators are treated as fundamental objects without any decoupling scheme,
and hence, problems that arise in other treatments are avoided, like considering fluctuations of
gauge fields that appear in the slave boson (SB) approach [39].

We start our formalism by extending the Hamiltonian of the t–J–V model, to N channels
for the spin degrees of freedom, and rescaling couplings accordingly.

H = − t

N

∑

〈i, j〉,p

(X̂ p0
i X̂0 p

j + h.c.) + J

2N

∑

〈i, j〉;pp′
(X̂ pp′

i X̂ p′ p
j − X̂ pp

i X̂ p′ p′
j )

+ V

N

∑

〈i, j〉;pp′
X̂ pp

i X̂ p′ p′
j − μ

∑

i,p

X̂ pp
i (2)

where the spin indices σ, σ̄ were extended to new indices p and p′ running from 1 to N . In
order to obtain a finite theory in the infinite-N limit, we rescaled t , J and V as t/N , J/N and
V/N , respectively. In (2) μ is the chemical potential.

As shown previously, a path integral can be obtained with an Euclidean Lagrangian LE

given by

LE = 1

2

∑

i,p

(Ẋ0 p
i X p0

i + Ẋ p0
i X0 p

i )

X00
i

+ H (3)

and the following two additional constraints:

X00
i +

∑

p

X pp
i − N

2
= 0 (4)

and

X pp′
i − X p0

i X0 p′
i

X00
i

= 0, (5)

which are required to satisfy the commutation rules of X -operators. While (4) is the
completeness condition, (5) originates in the above mentioned requirement to satisfy the
commutation rules. For a detailed discussion of the constraints, and their relation with the
commutation rules, we refer to [35, 40]. In our path integral approach we associate Grassmann
and usual bosonic variables with Fermi-like and boson-like X -operators, respectively.

We now discuss the main steps needed to introduce a large-N expansion [35, 37]. First, we
integrate over the boson variables X pp′

using (5). The completeness condition is enforced by
exponentiating (4) and introducing Lagrange multipliers λi . We write the boson fields in terms
of static mean-field values, (r0, λ0) and fluctuation fields δRi , δλi , as

X00
i = Nr0(1 + δRi ) λi = λ0 + δλi , (6)

and we perform the following change of variables for the fermion fields:

f †
i p = 1√

Nr0
X p0

i fip = 1√
Nr0

X0 p
i . (7)

Due to (5), and after using (7), the exchange interaction contains four fermion fields
that can be decoupled in terms of the bond variable �i j through a Hubbard–Stratonovich
transformation, where �i j is the field associated with the quantity

∑
p f †

j p fip/[(1 + δRi )(1 +
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δR j )]1/2. We write the �i j fields in term of static mean field values and dynamical fluctuations
�

η

i = �(1+rη

i + iAη

i ), where rη

i and Aη

i correspond to the amplitude and the phase fluctuations
of the bond variable, respectively. The index η takes three values associated with the bond
directions η1 = (1, 0), η2 = ( 1

2 ,
√

3
2 ) and η3 = (− 1

2 ,
√

3
2 ) of the triangular lattice.

Introducing the above change of variables, and after expanding 1/(1 + δR) in powers of
δR, we arrive at the following effective Lagrangian:

Leff = −1

2

∑

i,p

(
ḟi p f †

i p + ḟ †
i p fip

)
(1 − δRi + δR2

i ) + tr0

∑

〈i, j〉,p

( f †
i p f j p + h.c.)

− μ
∑

i,p

f †
i p fip(1 − δRi + δR2

i ) + N r0

∑

i

δλiδRi +
∑

i,p

f †
i p fip(1 − δRi )δλi

+ 2N

J
�2
∑

iη

[
(rη

i )2 + (Aη

i )
2
]+ Nr 2

0

(
V − 1

2
J

)∑

〈i, j〉
δRiδR j

− �
∑

〈i, j〉,p

( f †
i p f j p + f †

j p fip)[1 − 1
2 (δRi + δR j) + 1

4δRiδR j

+ 3
8 (δR2

i + δR2
j )] − �

∑

〈i, j〉,p,η

[ f †
i p f j p(r

η

i + iAη

i )[1 − 1
2 (δRi + δR j )] + h.c.],

(8)

where we have changed μ to μ − λ0 and dropped constant and linear terms in the fields.
Looking at the effective Lagrangian (8), the Feynman rules can be obtained as usual. The

bilinear parts give rise to the propagators and the remaining pieces are represented by vertices.
To leading order in 1/N , we associate with the N-component fermion field f p a propagator

connecting two generic components p and p′,

G(0)
pp′(k, νn) = − δpp′

iνn − Ek
(9)

which is of O(1) and where Ek is

Ek = −2(tr0 + �)

(
cos kx + 2 cos

kx

2
cos

√
3

2
ky

)
− μ, (10)

and k and νn are the momentum and the fermionic Matsubara frequency of the fermionic field,
respectively. The fermion variables fip are proportional to the X -operators (7) and should not
be associated with the spinons from the SB approach.

The mean field values r0 and � must be determined by minimizing the leading order
theory. From the completeness condition (4) r0 is equal to x/2, where x is the electron doping
away from half-filling. On the other hand, the expression for � is

� = J

2Ns

1

3

∑

k,η

cos(kη)nF(Ek), (11)

where nF is the Fermi function and Ns is the number of sites in the lattice. For a given doping
x ; μ and � must be determined self-consistently from (1 − x) = 2

Ns

∑
k nF(Ek) and (11).

We associate with the eight-component boson field

δXa = (δR, δλ, rη1 , rη2 , rη3 , Aη1 , Aη2 , Aη3),
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the inverse of the propagator, connecting two generic components a and b,

D−1
(0)ab(q, ωn) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γq x/2 0 0 0 0 0 0
x/2 0 0 0 0 0 0 0

0 0 4
J �2 0 0 0 0 0

0 0 0 4
J �2 0 0 0 0

0 0 0 0 4
J �2 0 0 0

0 0 0 0 0 4
J �2 0 0

0 0 0 0 0 0 4
J �2 0

0 0 0 0 0 0 0 4
J �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where γq = (4V −2J )(x/2)2 (cos kx +2 cos kx
2 cos

√
3

2 ky) and the indices a, b run from 1 to 8.
q and ωn are the momentum and the Bose Matsubara frequency of the boson field, respectively.

The first component δR of the δXa field is connected with charge fluctuations (6),
i.e. X00

i = Nr0(1 + δRi), where X00 is the Hubbard operator associated with the number
of electrons.

The non-quadratic terms in (8) define three- and four-leg vertices.
The three-leg vertex


pp′
a = (−1)

[
i

2
(νn + ν ′

n) + μ + 2�
∑

η

cos
(

kη − qη

2

)
cos

qη

2
, 1,

−2� cos
(

kη1 − qη1

2

)
,−2� cos

(
kη2 − qη2

2

)
,

−2� cos
(

kη3 − qη3

2

)
, 2� sin

(
kη1 − qη1

2

)
,

2� sin
(

kη2 − qη2

2

)
, 2� sin

(
kη3 − qη3

2

)]
δ pp′

(13)

represents the interaction between two fermions and one boson.
The four-leg vertex 


pp′
ab represents the interaction between two fermions and two bosons.

The only elements different from zero are



pp′
δRδR =

(
i

2
(νn + ν ′

n) + μ + �
∑

η

cos

(
kη − qη + q ′

η

2

)

×
[

cos
qη

2
cos

q ′
η

2
+ cos

qη + q ′
η

2

])
δ pp′

,



pp′
δRδλ = 1

2δ
pp′

,



pp′
δRrη = −� cos

(
kη − qη + q ′

η

2

)
cos

q ′
η

2
δ pp′

,

and



pp′
δR Aη = � sin

(
kη − qη + q ′

η

2

)
cos

q ′
η

2
δ pp′

.

Each vertex conserves momentum and energy and they are of O(1). In each diagram there
is a minus sign for each fermion loop and a symmetry factor. Feynman rules are given in
figure 2(a).

As usual in a large-N approach, any physical quantity can be calculated at a given order
just by counting the powers in 1/N of vertices and propagators involved in the corresponding
diagrams. In the present summary there is no mention of the ghost fields. They were treated in
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a)

b)

G = D =

Λ = a

p

p’

q,ωn

k,νn

k’ ,νn
Λ =

a p

p’

k,νn

k’ ,νn
b

q’ ,ωn

q,ωn

+

a
pp’

pp’ ab

a b

pp’
ab

Π =ab

D =-1 = [D ] - Π(           )-1ab

p p’

ab ab

’’’

Propagators and vertices

(0)

(0)(0)

-1

Figure 2. Summary of the Feynman rules. (a) Solid lines represent the propagator G(0) (9). Dashed
lines represent the 8 × 8 boson propagator D(0) (12) for the eight-component field δXa . Notice
that the component (1, 1) of this propagator is directly associated with the X00 charge operator.



pp′
a (13) and 


pp′
ab represent the interaction between two fermions f p and one or two bosons

δXa respectively. (b) �ab contributions to the irreducible boson self-energy. Double dashed lines
correspond to dressed boson propagators.

previous papers [35, 37] and the only role they play is to cancel the infinities given by the two
diagrams of figure 2(b).

The exchange interaction J enters (12) in two different channels: (a) the term 2J in the
element (1, 1) of D−1

(0) is due to the charge-like term, −J/2N
∑

〈i, j〉;pp′ X pp
i X p′ p′

j , of the t–

J–V model. This term has the same form as the Coulomb term V/N
∑

〈i, j〉; pp′ X pp
i X p′ p′

j .

(b) The terms 4�2/J in the diagonal of D−1
(0) are due to the exchange-like term,

J/2N
∑

〈i, j〉; pp′ X pp′
i X p′ p

j , of the t–J–V model.

In (12) V is only present in the element (1, 1) of D−1
(0) and it is multiplied by (x/2)2, which

means that it is strongly screened, at low doping, by correlations. In addition, the effect of V is
diminished when J is finite.

The bare boson propagator D(0)ab (the inverse of (12)) is O(1/N). From the Dyson
equation, D−1

ab = D−1
(0)ab −�ab, the dressed components Dab (double dashed line in figure 2(b))

of the boson propagator can be found after the evaluation of the 8 × 8 boson self-energy matrix
�ab. Using the Feynman rules �ab can be evaluated through the diagrams of figure 2(b). It
results as

�ab(q, iωn) = − N

Ns

∑

k

hahb

[
nF(Ek+q ) − nF(Ek)

]

Ek+q − Ek − iωn
− N

Ns
δa1δb1

∑

k

εk+q − εk

2
nF(Ek),

(14)

where

ha =
[
εk+q + εk

2
, 1,−2� cos

(
kη1 + qη1

2

)
,−2� cos

(
kη2 + qη2

2

)
,

−2� cos
(

kη3 + qη3

2

)
, 2� sin

(
kη1 + qη1

2

)
,

2� sin
(

kη2 + qη2

2

)
, 2� sin

(
kη3 + qη3

2

)]
,

and εk = −2t (x/2)
∑

η cos(kη).
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The component (1, 1) of the dressed boson propagator Dab (also called DR R) is related to
the charge–charge correlation function χ c

i j . It can be written as [35, 41]

χ c
i j(τ ) = 1

N

∑

pq

〈Tτ X pp
i (τ )Xqq

j (0)〉, (15)

and the completeness condition and the relation between X00
i and δRi , in Fourier space,

χ c(q, ω) = −N
( x

2

)2
DR R(q, ω). (16)

In [35, 37, 41] it was pointed out that in O(1) the charge–charge correlation function shows the
presence of collective peaks above the particle–hole continuum.

Finally, one remark is in order at this point. From the completeness condition (4) we can
see that the charge operator X00 is of O(N), while the operators X pp are of O(1). This fact will
have the physical consequence that the 1/N approach weakens the effective spin interactions
compared to the one related to the charge degrees of freedom. Another consequence of this
result is the absence, in O(1), of collective excitations (like magnons) in the spin susceptibility.
The spin–spin correlation function is then a Pauli-like electronic bubble with renormalized
band due to correlations [35, 41]. While there are collective effects in the charge sector in
O(1), they appear in O(1/N) in the spin sector. However, as will be shown in section 4, since
superconductivity occurs at relatively large doping where the system behaves as a paramagnetic
metal, this fact is not relevant.

3. Phase diagram: instabilities of the homogeneous Fermi liquid

Before considering the possible electronic instabilities, we recall that in leading order we have
free fermions with an electronic band Ek (10), renormalized by Coulomb interactions. From
this electronic dispersion we obtain a large Fermi surface (FS) enclosing the � point. First
principles calculations [5] in cobaltates predict, apart from this FS, the existence of small
pockets near K points. However, it is important to notice that recent ARPES experiments [6]
do not show the presence of pockets. Invoking electronic correlations, a theoretical explanation
for the absence of pockets was given using LDA + U [42] and a strong-coupling mean field
approach [43]. These results give additional support for considering cobaltates as strongly
correlated systems.

Instabilities of the O(1) HFL phase are studied by analysing the zeros of Det D−1
ab =

Det (D−1
(0)ab − �ab). Expanding the determinant by minors along the first row, it can be written

in the static limit (ωn = 0) as follows:

Det D−1
ab = f (x, J, q)V + g(x, J, q) (17)

where f and g are long algebraic expressions and they were computed numerically in order to
study the instabilities. The fact that the �abs are V independent functions was used in (17).

The system presents two kinds of instabilities.

(a) V-dependent instabilities. They occur when f 
= 0. From (17) these instabilities take place
for given x , J and q, when the Coulomb potential is V = Vc = −g/ f .

(b) V-independent instabilities. They occur when the two functions f and g are zero
simultaneously.

Considering the case for cobaltates where the bare hopping t ∼ 150 meV [4] and
Udd ∼ 3.0–5.5 eV [8] we obtain, in agreement with other estimates [7, 12], (J = 4t2/U )
J ∼ 0.1–0.2 in units of t . Based on such estimates, we set J = 0.2 in what follows.
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Figure 3. V -dependent phase diagram for J = 0.2. Vc1 marks the border between the HFL and the√
3 × √

3 CDW. Vc2 marks the border between the HFL and PS. The vertical dashed line separates
the HFL from the BOP (see section 3.2).

3.1. Charge density wave instabilities

In this section the stability of the HFL phase will be studied as a function of V , since it
corresponds to type (a) above, i.e. to the V -dependent kind. Two instabilities are found with
critical values Vc1 and Vc2. In figure 3 we show the phase diagram in the Vc–x plane for
J = 0.2. Regions corresponding to HFL,

√
3 × √

3 CDW (V > Vc1) and phase separation
(PS) (V < Vc2) are identified.

As usual, PS takes place at q = 0. For a given J , the system shows PS for low x and V
below the corresponding line marked with Vc2. The PS region increases with increasing J .

When V > Vc1 the system enters a CDW state. The divergence at the onset of the CDW is
at q = Q = (4/3π, 0) corresponding to a

√
3 × √

3 CDW [14, 15]. The Vc–x line separating
the HFL from the

√
3 × √

3 CDW phase has a parabola-like shape with a minimum closer to
the doping x ∼ 0.35 where superconductivity takes place, with maximum Tc, in cobaltates.

The critical Coulomb repulsion Vc1 increases with increasing J . As can be seen from the
element (1, 1) of D−1

(0)ab in (12), the effect of V is diminished by the presence of J . For instance,
for x = 1/3, Vc1 is 1 and 1.13 for J = 0 and J = 0.2, respectively. For J = 0 our phase
diagram agrees with the obtained one in [14] (see figure 2 of that paper). The eigenvector
corresponding to the zero eigenvalue of D−1

ab is mainly of the form (1, 0, 0, 0, 0, 0, 0, 0) and
therefore the instability is concentrated in the charge sector.

The vertical dashed line separating the HFL from the BOP will be discussed in the next
subsection.

3.2. Bond-order phase

This instability corresponds to the V -independent kind. In figure 4 we show the phase diagram
of the model considering only this instability. For a given J , below a critical doping xc, the HFL
is unstable. As can be seen, the instability is strongly J dependent. When J → 0, xc → 0,
showing that J is the main source for the instability. For instance, for J = 0.2, xc ∼ 0.066,
which corresponds to the vertical dashed line in figure 3. In the inset of figure 4 we show the
J dependence of the critical momentum qc where the instability takes place. It is of the form
qc = (qx, 0) and leads to an incommensurate instability.
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Figure 4. V -independent instability. For a given J the HFL is unstable for x < xc against the BOP.
Inset: qx versus J .

The dominant symmetry involved in the instability is given by the eigenvector correspond-
ing to the zero eigenvalue, that in this case has the form ∼(0, 0, 0,−√

2/2,
√

2/2, 0, 0, 0), and
hence it is in a different sector than the V -dependent instabilities. It means that, for a given J ,
the amplitude variables rη2 and rη3 of �η (the fourth and fifth components of δXa) are frozen
at qc for x < xc. The term −�

∑
〈i, j〉,p,η( f †

i p f j p + f †
j p fip)r

η

i , in the fourth line of our effective

Lagrangian (8) (from which the components 3, 4 and 5 of the vertex 

pp′
a (13) are obtained) is,

in q-space, of the form 2�
∑

kqp,η cos(kη − qη/2)rη
q f †

k+q,p fk,p . When the variables rη2 and rη3

are frozen, a new hopping-like term of the form [cos(qcx/4) dxy(k) + sin(qcx/4)px(k)] is gen-
erated in the Hamiltonian. px and dxy are harmonics of the triangular lattice [14]. Hence, the
instability can be purely of d or p character depending on whether it takes place at qc = (0, 0)

or qc = (2π, 0) respectively. In between, both symmetries are mixed. For instance, for J = 0.2
we have qc ∼ (0.8, 0)π , which means that the instability is ∼65% d and ∼35% p. Therefore,
it is mainly of d-wave character at the onset of the instability. Since in the triangular lattice
d-wave symmetry is twofold degenerate, the new phase can be a combination of both.

In the case of the t–J model on the square lattice, these kinds of purely electronic
instabilities were studied using SB [44], Bayn–Kadanoff functional theory [45] and the path
integral large-N approach [37]. In this case two regimes were obtained. (a) For J < 0.5, at
low doping the system shows an instability whose eigenvector is mainly confined to the sector
corresponding to phase fluctuations Aη

i of the bond variables. Therefore, the new phase has a
complex order parameter and corresponds to the well known flux phase (FP). (b) For J > 0.5,
at low doping the eigenvector of the instability is confined to the sector corresponding to the
amplitude variables rη

i , and hence corresponds to the BOP. This is in fact the order we found
in the triangular lattice. From the discussion above, and the fact that phase separation is also
found on the triangular lattice, it seems that instabilities expected on the square lattice at high
values of J already appear at low values on the triangular lattice, a feature that may be due to
the larger coordination number. We would like to point out that, to our knowledge, this kind of
analysis has not been done before for the t–J model on the triangular lattice.

Finally, a word of caution about the BOP is in place here. Our figure 4 shows that at zero
doping the BOP would set in for finite J . However, numerical results [46, 47] indicate that
the antiferromagnetic Heisenberg model on a triangular lattice displays long-range Néel order
for spin S = 1/2. The same discrepancy appears on the square lattice with the techniques
mentioned above. While, due to its bipartite nature, the antiferromagnetic order is expected to
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be rather robust on a square lattice, geometric frustration on the triangular lattice should render
this state much more fragile, such that, upon doping, RVB-like scenarios [3] appear even more
probable in the present case. Therefore, since our large-N approach shows phases like the FP
and BOP at low doping on a square lattice [37], as do other mean field approaches (see above),
that are considered as serious candidates for underdoped cuprates, we expect the results on the
triangular lattice to be even more trustworthy.

4. Superconductivity

Having studied the stability conditions for the HFL under the influence of V and J , we consider
in this section possible superconducting states.

In [15] we have proposed that the interplay between electronic correlations and e–ph
interaction may be important for describing superconductivity in cobaltates. With this aim
we consider the additional electron–phonon Hamiltonian Hph + He−ph, where

Hph =
∑

i

ωE

(
a†

i ai + 1
2

)
, (18)

and

He−ph = g√
N

∑

i,p

(a†
i + ai)X pp

i . (19)

In order to obtain a finite theory in the N → ∞ we have rescaled the e–ph coupling g to
g/

√
N .
From Hph (18) we have a free phonon propagator

Dph
0 = −2ωE

ω2
n + ω2

E

, (20)

which is of O(1). Using the constraint (5), the expression (19) for He−ph reads

He−ph = g√
N

∑

i p

(a†
i + ai)

f †
i p fip

(1 + δRi)
, (21)

where the relations between X0 p and f p and between X00 and δR were also used. Up to
O(1/N) only the first term in the expansion of 1/(1 + δR) is necessary, leading to

He−ph = g√
N

∑

i p

(a†
i + ai)(1 − δRi) f †

i p fip. (22)

Next, we discuss the effective interaction between carriers. Fluctuations in O(1/N) give
rise to interactions among fermions. In O(1/N) there are two contributions to the total
pairing effective potential V T

eff shown in figure 5(a). The first diagram of figure 5(a) shows the
pairing effective potential, V t–J–V

eff , for the pure t–J–V model while the second diagram shows

the e–ph pairing potential V e−ph
eff . Notice that 1/N self-energy corrections in the fermionic

propagator (9) are not necessary for calculating Veff in O(1/N).
Due to the rescaling of the e–ph interaction, g, superconductivity from phonons also

appears in O(1/N), and therefore it can be treated on an equal footing to superconductivity
in the pure t–J–V model.

The new contribution to the e–ph pairing potential is the vertex (dark triangle) in the
second diagram of figure 5(a) which represents the e–ph interaction renormalized by electronic
correlations. The diagram of figure 5(b) shows that the renormalization of the bare vertex g is
due to the electronic correlations of the pure t–J–V model, which will be the main contribution
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Figure 5. (a) Total effective pairing V T
eff as the sum of a pure electronic mediated V t–J–V

eff and a

phonon mediated V e−ph
eff interactions. Solid, double dashed and dotted lines are the propagators

for fermions, Dab and phonons respectively. In V e−ph
eff , the bare e–ph vertex, g (solid circle), is

renormalized by electronic correlations as shown in (b). The last diagram contains a four-leg vertex
proportional to g, which is generated when our X-operator approach is applied (see (22)).

to our results. Notice that the e–ph vertex is not renormalized by the e–ph interaction. Hence,
we assume, as in usual metals, that Migdal theorem is valid.

Using our Feynman rules the renormalized e–ph vertex γ is

γ (q, k ′, k ′′, ωn, ν
′
n, ν

′′
n ) = gN

(
x

2
+ 2�

1

Ns

∑

k,η

cos
qη

2
cos

(
k + q

2

)

η

[nF(Ek+q ) − nF(Ek)]
Ek+q − Ek − iωn

)

× DRb(q, ωn)

pp
b , (23)

where 

pp
b is given by (13).

In the J = 0 case, the renormalized e–ph vertex can be written as

γ (q, k ′, k ′′, ωn, ν
′
n, ν

′′
n ) = Ng

x

2

{[
i

2
(ν ′

n + ν ′′
n ) + μ

]
DR R(q, ωn) + DλR(q, ωn)

}
, (24)

where the relevant contribution comes from the charge–charge correlation DR R (16). Vertex
corrections obtained by us are similar to the early calculations of [48], which were used before
for studying transport [49] and the isotope effect in cuprates [50].

In weak coupling we can evaluate the effective interactions on the FS, i.e. for ωn = ν ′
n =

ν ′′
n = 0 and the momentum q = k− k′ with k and k′ on the FS. Then, the total pairing effective

potential is

V T
eff(k, k′) = V t–J–V

eff (k, k′) + V e−ph
eff (k, k′), (25)

where, using the Feynman rules,

V t–J–V
eff (k, k′) = 
pp

a Dab(k − k′)
pp
b , (26)

and

V e−ph
eff (k, k′) = − λ

N(0)

[
γ ∗(k, k′)

]2
, (27)

where λ = 2g2

ωE
N(0) is the bare dimensionless e–ph coupling and N(0) is the bare electronic

density of states. In (27) γ ∗ = γ /g.
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Figure 6. Superconducting couplings λi in the s (dashed line), d (dotted-dashed line) and NNN-f
(solid line) channels for (a) the pure t–J –V model, (b) the e–ph model and (c) the total case. Results
are for J = 0.2 and V = 0.9Vc, which locates the system near the

√
3 ×√

3 CDW phase. The bare
e–ph superconducting coupling was chosen to be λ = 0.4.

In the following we choose λ = 0.4. To our knowledge the value of λ is not known for
cobaltates yet. However, recent experiments suggest that it is non-negligible [51]. λ = 0.4 is
of the order of recent estimates [52, 53].

Without correlations, γ ∗ = 1 and V e−ph
eff is the usual pairing potential used in BCS

theory, which in conventional metals leads to superconductivity in the isotropic s-wave channel.
However, in such a case, the characteristic dome shape observed in cobaltates would not be
expected, because there is no reason for a strongly doping dependent bare e–ph coupling λ.
Recently, Yada and Kontani [52], using a d–p model for NaCoO2, found evidence for phonon
mediated superconductivity in the s-wave channel, so that, as they pointed out, other effects,
such as electronic correlations, are necessary in order to stabilize an anisotropic pairing.

We use the effective potentials to compute the dimensionless effective couplings in the
different pairing channels or irreducible representations of the order parameter. The critical
temperatures Tc can be then estimated from Tci = 1.13ωc exp(1/λi ), where ωc is a suitable
cut-off frequency.

The effective couplings λi with different symmetries are defined as [36]

λi = 1

(2π)2

∫
(dk/|vk|)

∫
(dk′/|vk′ |)gi(k′)Veff(k′, k)gi(k)∫

(dk/|vk|)gi(k)2
(28)

where the functions gi(k) encode the different pairing symmetries (see table 1 of [14] for the
triangular lattice), and vk are the quasiparticle velocities at the Fermi surface. The integrations
are restricted to the Fermi surface. λi measures the strength of the interaction between electrons
at the Fermi surface in a given symmetry channel i . If λi > 0, electrons are repelled. Hence,
superconductivity is only possible when λi < 0.

Figure 6 shows results for the most relevant symmetry channels as s, d and NNN-f for
J = 0.2 and V ∼ 1 close to the

√
3 × √

3 CDW (see figure 3). The curves were cut at
x ∼ 0.066, where the BOP instability takes place. Figure 6(a) corresponds to the pure t–J–V
model. As expected, λt–J–V

s > 0 (dashed line), hence electrons are repelled, indicating no
tendencies to superconductivity with s symmetry.

In the NNN-f channel (solid line) we have obtained small negative values for λt–J–V
NNN-f

with a shallow minimum around x ∼ 0.38, suggesting the possibility of superconductivity.
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However, in the most favourable case λt–J–V
NNN-f ∼ −0.04, implying that an unrealistic cut-off ωc

is necessary in order to obtain a value of a few kelvin for Tc. This feature remains valid even
closer to the

√
3 × √

3 CDW phase.
The dotted–dashed line shows results for λt–J–V

d . Negative superconducting couplings are
found at small doping, x < 0.15, where λt–J–V

d can take robust values ∼−0.3, indicating
that superconductivity in the d-wave channel may be expected at such low doping. Our
calculations show that λt–J–V

d is independent of V . On the other hand, λt–J–V
d is strongly J

dependent, vanishing fast when J → 0. Comparing figures 3 and 6, it can be seen that d-wave
superconductivity occurs near the onset of BOP, which is also of d-wave character and triggered
by J . For the doping range where superconductivity takes place in cobaltates, x ∼ 0.35, there
is no indication for d-wave pairing.

Figure 6(b) shows results for the e–ph case. λ
e−ph
s (dashed line) would suggest that

superconductivity could be expected in the s-wave channel around x ∼ 0.38 following a dome
shape as in cobaltates. However, in a Gutzwiller description the s-wave order parameter would
be exactly zero. In contrast to that, the enforcement of the large-N non-double occupancy
constraint (4), namely, that only N/2 out of the total N states at a given site can be occupied at
the same time, makes s-wave superconductivity possible in spite of strong correlations (see [50]
for discussions).

λ
e−ph
NNN-f (solid line) shows robust negative superconducting couplings following a dome

shape around x ∼ 0.38. Notice that λ
e−ph
NNN-f ∼ −0.16, which is a factor of four larger than

for the pure t–J–V model. NNN-f superconductivity is not very sensitive to the value of J
and the only requirement is that the system must be close to a charge instability (in this case a√

3 × √
3 CDW).

The dotted–dashed line in figure 6(b) shows the projection of the e–ph coupling on the d-
wave channel, λ

e−ph
d . In the uncorrelated case λ

e−ph
d is exactly zero, but electronic correlations

are responsible for the weak modulation with doping of λ
e−ph
d . For low doping, λ

e−ph
d can

take small but negative values of the order of λ
e−ph
d ∼ −0.02 (not well appreciated in the

scale of figure 6). These small and negative values for λ
e−ph
d increase with J . An appreciable

strength of λ
e−ph
d can only be obtained for unrealistic values of J . As we mentioned above the

renormalized e–ph vertex is mainly dominated by charge fluctuations, and then NNN-f pairing
proves correlation effects better than d-wave pairing.

Figure 6(c) shows results for the total coupling λT
i = λt–J–V

i + λ
e−ph
i . The solid line

(λT
NNN-f) shows the strongest tendencies to superconductivity. The dome shape around x ∼ 0.38

is clearly present. While λt–J–V
NNN-f is small but negative, λT

NNN-f increases slightly with respect to
λ

e−ph
NNN-f.

The situation is different for the s-wave channel; as λt–J–V
s > 0, λT

s will be smaller than
λ

e−ph
s . For instance, λT

s ∼ −0.05 at x ∼ 0.38, as a result of strong correlations.
Finally, as the contribution λ

e−ph
d (dotted–dashed line in panel (b)) is very small, the

total effective coupling λT
d is close to λt–J–V

d . In the triangular lattice the d-wave channel is
degenerate. Our calculation determines the leading symmetry of the superconducting order
parameter but not its value. However, our results are consistent with previous mean field
studies [10, 12] where superconductivity was found with d1 + id2 symmetry. We would like to
remark that these mean field studies assume the pure J term as the effective interaction. In our
calculation we have included fluctuations through the infinite series of bubbles in the evaluation
of the propagator Dab.

We conclude that the t–J–V model alone would support superconductivity in the d-wave
channel at low doping (x < 0.15 for J = 0.2). To our knowledge there are at present no
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Figure 7. Superconducting coupling in the NNN-f channel as a function of V approaching the
critical value Vc for J = 0.2. The figure is presented for x = 0.38 where the largest superconducting
coupling was obtained. Results for the pure t–J –V model (dotted–dashed line), pure e–ph model
(dashed line) and the total case (solid line) are presented, showing that, when phonons are included,
a large window near the

√
3 × √

3 CDW phase exists where the system presents indications for
superconductivity. Inset: Tc versus doping for the NNN-f channel. The BCS formula was used for
the estimation of Tc (see text).

data for such doping levels concerning superconductivity. On the other hand, while e–ph
interaction essentially introduces no changes in the d-wave channel, it effectively couples to
charge fluctuations close to a charge ordering instability. Near charge order, charge fluctuations
renormalize the e–ph effective interaction in such a way that superconductivity with triplet
NNN-f symmetry is favoured around x ∼ 0.38.

In order to see the influence of the proximity to the charge order on superconductivity, in
figure 7 we show, for x = 0.38, the values of λt–J–V

NNN-f (dotted–dashed line), λe−ph
NNN-f (dashed line)

and λT
NNN-f (solid line) as a function of V . For the pure t–J–V model the values of λt–J–V

NNN-f are
very small even very close to the

√
3×√

3 CDW. In contrast, when e–ph interaction is included,
there is a large window for the parameters for which superconductivity may be possible. As
λT

NNN-f increases with V , Tc will also increase. For cobaltates, it is known from experiments
that Tc increases with water inclusion [55], supporting the view that the increasing of V mimics
the increasing of water content. For small V , λT

NNN-f is very small, in agreement with the non-
existence of superconductivity in nonhydrated samples.

Although at this point a quantitative comparison with experiments is beyond the scope
of our analysis, it is still of interest to make a qualitative estimate of Tc. Since NNN-f
superconductivity is in our case mainly mediated by phonons, we consider as a relevant cut-
off the corresponding energy scale. Recent first principles lattice dynamics calculations [54]
show the existence of optical phonons as high as 75 meV, and for simple estimates we consider
ωE = 40 meV [53]. Using the values for λT

NNN-f (solid line in panel (c) of figure 6) we show,
in the inset of figure 7, results for Tc. Our crude estimate gives Tc ∼ 2 K, which is of the
order of the experimental value Tc ∼ 5 K. A priori, this result may appear trivial because the
e–ph interaction is certainly efficient for leading to superconductivity with Tc in the scale of a
few kelvin in usual metals. However, there are two features in our results that would be absent
when correlations are left aside. First, the pairing channel is an unconventional one, a result that
would not be possible considering e–ph interaction alone. Second, a dome shape is obtained
for Tc, again a fact that would be missing by considering e–ph interaction alone.
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5. Conclusions and discussions

We have studied the t–J–V model plus phonons on the triangular lattice.
Before studying superconductivity we have presented the phase diagram of the model.

Two types of instabilities were found. (a) V -dependent instabilities. These instabilities are
dominated by the short-range Coulomb repulsion V . For V larger than a critical value Vc the
system enters a

√
3 × √

3 CDW phase. PS was also obtained for small x and V . (b) V -
independent instability. This instability is dominated by J and is common to the pure t–J
model. For a given J , the system is unstable for doping smaller than a critical one xc. This
new phase occurs at an incommensurate momentum qc and it is called BOP. It was found that
xc → 0 when J → 0.

These phases delimit the region of parameters (x , J and V ) where the HFL is stable. Paring
was calculated in this last region.

Near the
√

3 × √
3 CDW state the e–ph vertex is renormalized by electronic correlations

developing an anisotropy in k-space due to the coupling with charge fluctuations. This
anisotropy favours superconductivity with NNN-f symmetry when the renormalized vertex is
used for calculating phonon mediated pairing. Besides the possibility of anomalous pairing, the
model shows possible superconductivity following a dome shape around x ∼ 0.35 with values
for Tc of the order of a few kelvin. We have found that the above results are robust against the
value of J around x ∼ 0.35.

In addition to NNN-f superconductivity for doping x ∼ 0.35, for finite J we have found
the possibility of d-wave pairing at low doping. For instance, for J = 0.2, on the high side
for possible values of J , d-wave pairing can be expected for x < 0.15. In contrast to NNN-f
pairing, d-wave pairing is not affected by V , suggesting that superconductivity in that channel
could exist even without hydration. To our knowledge superconductivity was not investigated
in cobaltates for samples at such small doping levels.

A discussion in relation to cobaltates is in order at this point. It was recently proposed [56],
and studied experimentally [55], that hydration causes the electronic structure to be more
two dimensional. Notice that in [55] it was shown that Tc decreases with decreasing
lattice parameter c. We think that due to this effect the Coulomb repulsion V may be less
screened when the system is hydrated. If V is small when the system is not hydrated,
phonons will favour superconductivity only in the s-wave channel. However, the strong
repulsion in this channel from the t–J–V model (figure 6(a)) suppresses pairing from
phonons. This may be the reason for the nonexistence of superconductivity in non-hydrated
cobaltates.

As NNN-f superconductivity has a large contribution from phonons we expect a large
isotope coefficient. Our theory also predicts a rather constant isotope coefficient along the
dome in contrast to the strong doping dependent isotope coefficient in cuprates [57]. To our
knowledge, isotope effect experiments are still not available for cobaltates. We expect that the
improvement in single-crystal preparation [58] will be useful for isotope experiments in the
near future. We consider this experiment as a strong test for our approach.

We would like to remark about some analogies between cobaltates and organic materials.
As in organic materials [59], optical conductivity experiments in cobaltates [60] show the
presence of low-energy features which can be associated with the proximity of the system to
the charge order. Merino and McKenzie [61] pointed out that the proximity to the charge order
is relevant for superconductivity with anomalous paring in organic systems. As our scenario
predicts a

√
3 × √

3 CDW state for V > Vc it will be interesting to see if a further inclusion
of water can trigger the

√
3 × √

3 CDW phase or, at least, if low-energy optical features are
reinforced with hydration.
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Recent reports discuss the possibility for singlet s-wave superconductivity [27] and the
coexistence of s-wave and unconventional pairing [62]. Such a situation could be reached in
our case by increasing the bare λ from λ = 0.4, since then the total superconducting couplings
λT

s and λT
NNN-f become more attractive and, for λ > 1, both symmetries are nearly degenerate.

However, lacking detailed information about the e–ph coupling, we take a cautious value for
λ, that is already sufficient to trigger superconductivity, and as shown above of unconventional
type.
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